Efficient iterative solution of linear systems from discretizing singular integral equations.
Non-linear singular integral equations are investigated in connection with some basic applications in two-dimensional fluid mechanics. A general existence and uniqueness analysis is proposed for non-linear singular integral equations defined on a Banach space. Therefore, the non-linear equations are defined over a finite set of contours and the existence of solutions is investigated for two different kinds of equations, the first and the second kind. Moreover, the existence of solutions is further...
A class of non-linear singular integral equations with Hilbert kernel and a related class of quasi-linear singular integro-differential equations are investigated by applying Schauder's fixed point theorem in Banach spaces.
Galerkin discretizations of integral equations in require the evaluation of integrals where S(1),S(2) are d-simplices and g has a singularity at x = y. We assume that g is Gevrey smooth for xy and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules using N function evaluations of g which achieves exponential convergence |I – | ≤C exp(–rNγ) with...
Galerkin discretizations of integral equations in require the evaluation of integrals where S(1),S(2) are d-simplices and g has a singularity at x = y. We assume that g is Gevrey smooth for xy and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules using N function evaluations of g which achieves exponential convergence |I – | ≤C exp(–rNγ) with...