Existence of solutions of Sobolev-type semilinear mixed integrodifferential inclusions in Banach spaces.
The existence of a solution for a class of quasilinear integrodifferential equations of Volterra-Hammerstein type with nonlinear boundary conditions is established. Such equations occur in the study of the p-Laplace equation, generalized reaction-diffusion theory, non-Newtonian fluid theory, and in the study of turbulent flows of a gas in a porous medium. The results are obtained by using upper and lower solutions, and extend some previously known results.
A class of non-linear singular integral equations with Hilbert kernel and a related class of quasi-linear singular integro-differential equations are investigated by applying Schauder's fixed point theorem in Banach spaces.
In this paper we prove an existence theorem for the Hammerstein integral equation , where the integral is taken in the sense of Pettis. In this theorem continuity assumptions for f are replaced by weak sequential continuity and the compactness condition is expressed in terms of the measures of weak noncompactness. Our equation is considered in general Banach spaces.