Page 1 Next

Displaying 1 – 20 of 288

Showing per page

A domain decomposition analysis for a two-scale linear transport problem

François Golse, Shi Jin, C. David Levermore (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem

François Golse, Shi Jin, C. David Levermore (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

A method for treating a class of non­linear diffusion problems

Stavros Busenberg, Mimmo Iannelli (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si presenta un metodo di soluzione di una classe di problemi di diffusione nonlineare che hanno origine dalla teoria delle popolazioni con struttura di età.

A nonlocal coagulation-fragmentation model

Mirosław Lachowicz, Dariusz Wrzosek (2000)

Applicationes Mathematicae

A new nonlocal discrete model of cluster coagulation and fragmentation is proposed. In the model the spatial structure of the processes is taken into account: the clusters may coalesce at a distance between their centers and may diffuse in the physical space Ω. The model is expressed in terms of an infinite system of integro-differential bilinear equations. We prove that some results known in the spatially homogeneous case can be extended to the nonlocal model. In contrast to the corresponding local...

A proof of the smoothing properties of the positive part of Boltzmann's kernel.

François Bouchut, Laurent Desvillettes (1998)

Revista Matemática Iberoamericana

We give two direct proofs of Sobolev estimates for the positive part of Boltzmann's kernel. The first deals with a cross section with separated variables; no derivative is needed in this case. The second is concerned with a general cross section having one derivative in the angular variable.

Currently displaying 1 – 20 of 288

Page 1 Next