Asymptotic stability of an integro-differential equation of parabolic type
This work is concerned with stabilization of a wave equation by a linear boundary term combining frictional and memory damping on part of the boundary. We prove that the energy decays to zero exponentially if the kernel decays exponentially at infinity. We consider a slightly different boundary condition than the one used by M. Aassila et al. [Calc. Var. 15, 2002]. This allows us to avoid the assumption that the part of the boundary where the feedback is active is strictly star-shaped. The result...
The nonlinear integro-differential system associated with the penetration of a magnetic field into a substance is considered. The asymptotic behavior as of solutions for two initial-boundary value problems are studied. The problem with non-zero conditions on one side of the lateral boundary is discussed. The problem with homogeneous boundary conditions is studied too. The rates of convergence are given. Results presented show the difference between stabilization characters of solutions of these...
In this paper, we show the backward uniqueness in time of solutions to nonlinear integro-differential systems with Neumann or Dirichlet boundary conditions. We also discuss reasonable physical interpretations for our conclusions.
We present some recent results on the blow-up behavior of solutions of heat equations with nonlocal nonlinearities. These results concern blow-up sets, rates and profiles. We then compare them with the corresponding results in the local case, and we show that the two types of problems exhibit "dual" blow-up behaviors.