Basic sequences in some regular Köthe spaces.
En la Sección 1 se pueban resultados abstractos sobre preduales y sobre bidualidad de espacios (LF). Sea E = indn En un espacio (LF), ponemos H = indn Hn para una sucesión de subespacios de Fréchet Hn de En con Hn ⊂ Hn+1. Investigamos bajo qué condiciones el espacio E es canónicamente (topológicamente isomorfo a) el bidual inductivo (H'b)'i o (incluso) al bidual fuerte de H. Los resultados abstractos se aplican en la Sección 2, especialmente a espacios (LF) ponderados de funciones holomorfas, pero...
Characterizations of pairs (E,F) of complete (LF)?spaces such that every continuous linear map from E to F maps a 0?neighbourhood of E into a bounded subset of F are given. The case of sequence (LF)?spaces is also considered. These results are similar to the ones due to D. Vogt in the case E and F are Fréchet spaces. The research continues work of J. Bonet, A. Galbis, S. Önal, T. Terzioglu and D. Vogt.