0 Maps between FK Spaces and Summability.
Page 1 Next
Robert DeVos (1972)
Mathematische Zeitschrift
Z. Altshuler (1977)
Compositio Mathematica
William H. Courage, William J. Davis (1972)
Mathematische Annalen
M. Valdivia (1988/1989)
Mathematische Zeitschrift
Ed Dubinsky, W. Robinson (1973)
Studia Mathematica
M. Alpseymen (1975)
Journal für die reine und angewandte Mathematik
Jarno Talponen (2011)
Bulletin of the Polish Academy of Sciences. Mathematics
We introduce and study a natural class of variable exponent spaces, which generalizes the classical spaces and c₀. These spaces will typically not be rearrangement-invariant but instead they enjoy a good local control of some geometric properties. Some geometric examples are constructed by using these spaces.
G. Bennett (1974)
Journal für die reine und angewandte Mathematik
Ed Dubinsky (1972)
Studia Mathematica
G. Vassiliadis (2005)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Mefharet Kocatepe (1991)
Manuscripta mathematica
Miguel Florencio, Pedro José Paúl (1988)
Časopis pro pěstování matematiky
Plamen Djakov (1975)
Studia Mathematica
V.B. Moscatelli, G. Metafune (1988)
Monatshefte für Mathematik
Séan Dineen, Richard Timoney (1989)
Studia Mathematica
P.K. Kamthan, Manjul Gupta (1980)
Journal für die reine und angewandte Mathematik
Johann Boos, Toivo Leiger (2005)
Studia Mathematica
There is a nontrivial gap in the proof of Theorem 5.2 of [2] which is one of the main results of that paper and has been applied three times (cf. [2, Theorem 5.3, (G) in Section 6, Theorem 6.4]). Till now neither the gap has been closed nor a counterexample found. The aim of this paper is to give, by means of some general results, a better understanding of the gap. The proofs that the applications hold will be given elsewhere.
Dietmar Vogt (1983)
Mathematische Zeitschrift
Castillo, Jesús M.F. (1987)
Portugaliae mathematica
Eberhard Schock (1972)
Studia Mathematica
Page 1 Next