Page 1

Displaying 1 – 5 of 5

Showing per page

Approximation by nonlinear integral operators in some modular function spaces

Carlo Bardaro, Julian Musielak, Gianluca Vinti (1996)

Annales Polonici Mathematici

Let G be a locally compact Hausdorff group with Haar measure, and let L⁰(G) be the space of extended real-valued measurable functions on G, finite a.e. Let ϱ and η be modulars on L⁰(G). The error of approximation ϱ(a(Tf - f)) of a function f ( L ( G ) ) ϱ + η D o m T is estimated, where ( T f ) ( s ) = G K ( t - s , f ( t ) ) d t and K satisfies a generalized Lipschitz condition with respect to the second variable.

Approximation problems in modular spaces of double sequences.

Aleksander Waszak (1990)

Publicacions Matemàtiques

Let X denote the space of all real, bounded double sequences, and let Φ, φ, Γ be φ-functions. Moreover, let Ψ be an increasing, continuous function for u ≥ 0 such that Ψ(0) = 0.In this paper we consider some spaces of double sequences provided with two-modular structure given by generalized variations and the translation operator (...).

Approximation results for nonlinear integral operators in modular spaces and applications

Ilaria Mantellini, Gianluca Vinti (2003)

Annales Polonici Mathematici

We obtain modular convergence theorems in modular spaces for nets of operators of the form ( T w f ) ( s ) = H K w ( s - h w ( t ) , f ( h w ( t ) ) ) d μ H ( t ) , w > 0, s ∈ G, where G and H are topological groups and h w w > 0 is a family of homeomorphisms h w : H h w ( H ) G . Such operators contain, in particular, a nonlinear version of the generalized sampling operators, which have many applications in the theory of signal processing.

Currently displaying 1 – 5 of 5

Page 1