The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Geometry of the Banach spaces C(βℕ × K,X) for compact metric spaces K

Dale E. Alspach, Elói Medina Galego (2011)

Studia Mathematica

A classical result of Cembranos and Freniche states that the C(K,X) space contains a complemented copy of c₀ whenever K is an infinite compact Hausdorff space and X is an infinite-dimensional Banach space. This paper takes this result as a starting point and begins a study of conditions under which the spaces C(α), α < ω₁, are quotients of or complemented in C(K,X). In contrast to the c₀ result, we prove that if C(βℕ ×[1,ω],X) contains a complemented copy of C ( ω ω ) then X contains a copy of c₀. Moreover,...

G-narrow operators and G-rich subspaces

Tetiana Ivashyna (2013)

Open Mathematics

Let X and Y be Banach spaces. An operator G: X → Y is a Daugavet center if ‖G +T‖ = ‖G‖+‖T‖ for every rank-1 operator T. For every Daugavet center G we consider a certain set of operators acting from X, so-called G-narrow operators. We prove that if J is the natural embedding of Y into a Banach space E, then E can be equivalently renormed so that an operator T is (J ○ G)-narrow if and only if T is G-narrow. We study G-rich subspaces of X: Z ⊂ X is called G-rich if the quotient map q: X → X/Z is...

Currently displaying 1 – 4 of 4

Page 1