Displaying 41 – 60 of 70

Showing per page

On the distribution of random variables corresponding to Musielak-Orlicz norms

David Alonso-Gutiérrez, Sören Christensen, Markus Passenbrunner, Joscha Prochno (2013)

Studia Mathematica

Given a normalized Orlicz function M we provide an easy formula for a distribution such that, if X is a random variable distributed accordingly and X₁,...,Xₙ are independent copies of X, then 1 / C p | | x | | M | | ( x i X i ) i = 1 | | p C p | | x | | M , where C p is a positive constant depending only on p. In case p = 2 we need the function t ↦ tM’(t) - M(t) to be 2-concave and as an application immediately obtain an embedding of the corresponding Orlicz spaces into L₁[0,1]. We also provide a general result replacing the p -norm by an arbitrary N-norm. This...

On the embedding of 2-concave Orlicz spaces into L¹

Carsten Schütt (1995)

Studia Mathematica

In [K-S 1] it was shown that A v e π ( i = 1 n | x i a π ( i ) | 2 ) 1 / 2 is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence a 1 , . . . , a n so that the above expression is equivalent to a given Orlicz norm.

On the geometry of proportional quotients of l m

Piotr Mankiewicz, Stanisław J. Szarek (2003)

Studia Mathematica

We compare various constructions of random proportional quotients of l m (i.e., with the dimension of the quotient roughly equal to a fixed proportion of m as m → ∞) and show that several of those constructions are equivalent. As a consequence of our approach we conclude that the most natural “geometric” models possess a number of asymptotically extremal properties, some of which were hitherto not known for any model.

On the Rademacher maximal function

Mikko Kemppainen (2011)

Studia Mathematica

This paper studies a new maximal operator introduced by Hytönen, McIntosh and Portal in 2008 for functions taking values in a Banach space. The L p -boundedness of this operator depends on the range space; certain requirements on type and cotype are present for instance. The original Euclidean definition of the maximal function is generalized to σ-finite measure spaces with filtrations and the L p -boundedness is shown not to depend on the underlying measure space or the filtration. Martingale techniques...

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. Astashkin, F. Sukochev, D. Zanin (2015)

Studia Mathematica

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.

Quantum expanders and geometry of operator spaces

Gilles Pisier (2014)

Journal of the European Mathematical Society

We show that there are well separated families of quantum expanders with asymptotically the maximal cardinality allowed by a known upper bound. This has applications to the “growth" of certain operator spaces: It implies asymptotically sharp estimates for the growth of the multiplicity of M N -spaces needed to represent (up to a constant C > 1 ) the M N -version of the n -dimensional operator Hilbert space O H n as a direct sum of copies of M N . We show that, when C is close to 1, this multiplicity grows as exp β n N 2 for...

Rademacher series from Orlicz to the present day

N. J. Kalton (2004)

Banach Center Publications

We survey some questions on Rademacher series in both Banach and quasi-Banach spaces which have been the subject of extensive research from the time of Orlicz to the present day.

Random ε-nets and embeddings in N

Y. Gordon, A. E. Litvak, A. Pajor, N. Tomczak-Jaegermann (2007)

Studia Mathematica

We show that, given an n-dimensional normed space X, a sequence of N = ( 8 / ε ) 2 n independent random vectors ( X i ) i = 1 N , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map Γ : N defined by Γ x = ( x , X i ) i = 1 N embeds X in N with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into N with asymptotically best possible relation between N, n, and ε.

Regularization of star bodies by random hyperplane cut off

V. D. Milman, A. Pajor (2003)

Studia Mathematica

We present a general result on regularization of an arbitrary convex body (and more generally a star body), which gives and extends global forms of a number of well known local facts, like the low M*-estimates, large Euclidean sections of finite volume-ratio spaces and others.

Spaces with maximal projection constants

Hermann König, Nicole Tomczak-Jaegermann (2003)

Studia Mathematica

We show that n-dimensional spaces with maximal projection constants exist not only as subspaces of l but also as subspaces of l₁. They are characterized by a rigid set of vector conditions. Nevertheless, we show that, in general, there are many non-isometric spaces with maximal projection constants. Several examples are discussed in detail.

Sparse recovery with pre-Gaussian random matrices

Simon Foucart, Ming-Jun Lai (2010)

Studia Mathematica

For an m × N underdetermined system of linear equations with independent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved that the s-sparse solutions of the system can be found by ℓ₁-minimization under the optimal condition m ≥ csln(eN/s). The main ingredient of the proof is a variation of a classical Restricted Isometry Property, where the inner norm becomes the ℓ₁-norm and the outer norm depends on probability distributions.

Stochastic approximation properties in Banach spaces

V. P. Fonf, W. B. Johnson, G. Pisier, D. Preiss (2003)

Studia Mathematica

We show that a Banach space X has the stochastic approximation property iff it has the stochasic basis property, and these properties are equivalent to the approximation property if X has nontrivial type. If for every Radon probability on X, there is an operator from an L p space into X whose range has probability one, then X is a quotient of an L p space. This extends a theorem of Sato’s which dealt with the case p = 2. In any infinite-dimensional Banach space X there is a compact set K so that for...

Sudakov-type minoration for log-concave vectors

Rafał Latała (2014)

Studia Mathematica

We formulate and discuss a conjecture concerning lower bounds for norms of log-concave vectors, which generalizes the classical Sudakov minoration principle for Gaussian vectors. We show that the conjecture holds for some special classes of log-concave measures and some weaker forms of it are satisfied in the general case. We also present some applications based on chaining techniques.

Currently displaying 41 – 60 of 70