On a nonlinear compactness lemma in .
We show several characterizations of weakly compact sets in Banach spaces. Given a bounded closed convex set C of a Banach space X, the following statements are equivalent: (i) C is weakly compact; (ii) C can be affinely uniformly embedded into a reflexive Banach space; (iii) there exists an equivalent norm on X which has the w2R-property on C; (iv) there is a continuous and w*-lower semicontinuous seminorm p on the dual X* with such that p² is everywhere Fréchet differentiable in X*; and as a...
If every member of a class P of Banach spaces has a projectional resolution of the identity such that certain subspaces arising out of this resolution are also in the class P, then it is proved that every Banach space in P has a strong M-basis. Consequently, every weakly countably determined space, the dual of every Asplund space, every Banach space with an M-basis such that the dual unit ball is weak* angelic and every C(K) space for a Valdivia compact set K , has a strong M-basis.
This paper mainly concerns the topological nature of uniformly convexifiable sets in general Banach spaces: A sufficient and necessary condition for a bounded closed convex set C of a Banach space X to be uniformly convexifiable (i.e. there exists an equivalent norm on X which is uniformly convex on C) is that the set C is super-weakly compact, which is defined using a generalization of finite representability. The proofs use appropriate versions of classical theorems, such as James' finite tree...
For p ≥ 1, a set K in a Banach space X is said to be relatively p-compact if there exists a p-summable sequence (xₙ) in X with . We prove that an operator T: X → Y is p-compact (i.e., T maps bounded sets to relatively p-compact sets) iff T* is quasi p-nuclear. Further, we characterize p-summing operators as those operators whose adjoints map relatively compact sets to relatively p-compact sets.