Linear maps preserving -unitary operators
Let be a complex Hilbert space, a positive operator with closed range in and the sub-algebra of of all -self-adjoint operators. Assume onto itself is a linear continuous map. This paper shows that if preserves -unitary operators such that then defined by is a homomorphism or an anti-homomorphism and for all , where and is the Moore-Penrose inverse of . A similar result is also true if preserves -quasi-unitary operators in both directions such that there exists an...