Displaying 41 – 60 of 152

Showing per page

L y L*-convergencias en G(H).

M.ª Carmen de las Obras Loscertales y Nasarre (1981)

Revista Matemática Hispanoamericana

Given a real separable Hilbert space H, we denote with G(H) the geometry of closed linear subspaces of H.The strong convergence of sequences of subspaces is shown to be a L*-convergence and the weak convergence a L-convergence.The smallest L*-convergence containing the weak convergence is found, and the orthogonal image of the strong convergence, which is also a L*-convergence, is defined.

Lipschitz extensions of convex-valued maps

Alberto Bressan, Agostino Cortesi (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra che ogni funzione multivoca lipschitziana con costante di Lipschitz M , definita su un sottoinsieme di uno spazio di Hilbert H a valori compatti e convessi in n , può essere estesa su tutto H ad una funzione multivoca lipschitziana con costante minore di 7 nM. In generale, non esistono invece estensioni aventi la stessa costante di Lipschitz M .

Multiple summing operators on l p spaces

Dumitru Popa (2014)

Studia Mathematica

We use the Maurey-Rosenthal factorization theorem to obtain a new characterization of multiple 2-summing operators on a product of l p spaces. This characterization is used to show that multiple s-summing operators on a product of l p spaces with values in a Hilbert space are characterized by the boundedness of a natural multilinear functional (1 ≤ s ≤ 2). We use these results to show that there exist many natural multiple s-summing operators T : l 4 / 3 × l 4 / 3 l such that none of the associated linear operators is s-summing...

Nuevas convergencias en G(H).

M.ª Carmen de las Obras Loscertales y Nasarre (1981)

Stochastica

Two new convergences of closed linear subspaces in the real separable Hilbert space are defined. These are the uniform strong convergence and the simultaneously strong and weak convergence to a single limit. Both convergences are characterized and it is shown that they verify the three axioms of Fréchet.

On 0 - 1 measure for projectors

Václav Alda (1980)

Aplikace matematiky

An example of a finite set of projectors in E 3 is exhibited for which no 0-1 measure exists.

Currently displaying 41 – 60 of 152