Some Properties of a Regular Sequence in Hilbert Space.
Si studia il problema della sintesi per un problema di controllo stocastico con equazione di stato lineare e funzione costo convessa.
The scalar product of the FEM basis functions with non-intersecting supports vanishes. This property is generalized and the concept of local bilinear functional in a Hilbert space is introduced. The general form of such functionals in the spaces and is given.
We prove that, for 1 ≤ p ≤ q < 2, each multiple p-summing multilinear operator between Banach spaces is also q-summing. We also give an improvement of this result for an image space of cotype 2. As a consequence, we obtain a characterization of Hilbert-Schmidt multilinear operators similar to the linear one given by A. Pełczyński in 1967. We also give a multilinear generalization of Grothendieck's Theorem for GT spaces.