Représentations d'opérateurs à valeurs dans L1 (X,..,..).
Hicham Fakhoury (1979)
Mathematische Annalen
Wolfgang Filter (1992)
Czechoslovak Mathematical Journal
Wolfgang Filter (1992)
Czechoslovak Mathematical Journal
D. H. Fremlin, B. de Pagter, W. J. Ricker (2005)
Studia Mathematica
Complete and σ-complete Boolean algebras of projections acting in a Banach space were introduced by W. Bade in the 1950's. A basic fact is that every complete Boolean algebra of projections is necessarily a closed set for the strong operator topology. Here we address the analogous question for σ-complete Boolean algebras: are they always a sequentially closed set for the strong operator topology? For the atomic case the answer is shown to be affirmative. For the general case, we develop criteria...
Romanov, A. S. (2003)
Sibirskij Matematicheskij Zhurnal
V. I. Bogachev (1990)
Acta Universitatis Carolinae. Mathematica et Physica
M. Nawrocki (1985)
Studia Mathematica
Surjit Singh Khurana, Jorge E. Vielma (1990)
Czechoslovak Mathematical Journal
J.C. Ferrando, M. López-Pellicer (1990)
Mathematische Annalen
Sylvia Pulmannovà (1980)
Annales de l'I.H.P. Physique théorique
Richard Becker (1977)
Séminaire Choquet. Initiation à l'analyse
Peter Greim, Michael Cambern (1982)
Mathematische Zeitschrift
G.L.G. Sleijpen (1981)
Semigroup forum
C.H. Cook (1984)
Manuscripta mathematica
L. Drewnowski, G. Emmanuele (1993)
Studia Mathematica
Let (S, ∑, m) be any atomless finite measure space, and X any Banach space containing a copy of . Then the Bochner space is uncomplemented in ccabv(∑,m;X), the Banach space of all m-continuous vector measures that are of bounded variation and have a relatively compact range; and ccabv(∑,m;X) is uncomplemented in cabv(∑,m;X). It is conjectured that this should generalize to all Banach spaces X without the Radon-Nikodym property.
Jaroslav Mohapl (1991)
Czechoslovak Mathematical Journal
Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)
Bulletin of the Polish Academy of Sciences. Mathematics
Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into . The paper deals with Y-weak cluster points ϕ̅ of the sequence in X, where is measurable for j ∈ ℕ and is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set , the integral exists for and on , where is a measurable-dependent family of Radon probability measures on .
Sychev, M.A. (2005)
Sibirskij Matematicheskij Zhurnal
Khalil Noureddine (1977)
Publications du Département de mathématiques (Lyon)
Michalak Artur (1996)