Page 1

Displaying 1 – 3 of 3

Showing per page

Integral holomorphic functions

Verónica Dimant, Pablo Galindo, Manuel Maestre, Ignacio Zalduendo (2004)

Studia Mathematica

We define the class of integral holomorphic functions over Banach spaces; these are functions admitting an integral representation akin to the Cauchy integral formula, and are related to integral polynomials. After studying various properties of these functions, Banach and Fréchet spaces of integral holomorphic functions are defined, and several aspects investigated: duality, Taylor series approximation, biduality and reflexivity.

Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces

Manfred Scheve (1991)

Studia Mathematica

Let Λ_R(α) be a nuclear power series space of finite or infinite type with lim_{j→∞} (1/j) log α_j = 0. We consider open polydiscs D_a in Λ_R(α)'_b with finite radii and the spaces H(D_a) of all holomorphic functions on D_a under the compact-open topology. We characterize all isomorphy classes of the spaces {H(D_a) | a ∈ Λ_R(α), a > 0}. In the case of a nuclear power series space Λ₁(α) of finite type we give this characterization in terms of the invariants (Ω̅ ) and (Ω̃ ) known from the theory...

Currently displaying 1 – 3 of 3

Page 1