Page 1

Displaying 1 – 3 of 3

Showing per page

Pointwise Fourier inversion of distributions on spheres

Francisco Javier González Vieli (2017)

Czechoslovak Mathematical Journal

Given a distribution T on the sphere we define, in analogy to the work of Łojasiewicz, the value of T at a point ξ of the sphere and we show that if T has the value τ at ξ , then the Fourier-Laplace series of T at ξ is Abel-summable to τ .

Polynomial ultradistributions: differentiation and Laplace transformation

O. Łopuszański (2010)

Banach Center Publications

We consider the multiplicative algebra P(𝒢₊') of continuous scalar polynomials on the space 𝒢₊' of Roumieu ultradistributions on [0,∞) as well as its strong dual P'(𝒢₊'). The algebra P(𝒢₊') is densely embedded into P'(𝒢₊') and the operation of multiplication possesses a unique extension to P'(𝒢₊'), that is, P'(𝒢₊') is also an algebra. The operation of differentiation on these algebras is investigated. The polynomially extended Laplace transformation and its connections with the differentiation...

Currently displaying 1 – 3 of 3

Page 1