Spectral dilation of operator-valued measures and its application to infinite-dimensional harmonizable processes
Let be a completely regular Hausdorff space, the space of all scalar-valued bounded continuous functions on with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally -convex.
Results on integration by parts and integration by substitution for the variational integral of Henstock are well-known. When real-valued functions are considered, such results also hold for the Generalized Riemann Integral defined by Kurzweil since, in this case, the integrals of Kurzweil and Henstock coincide. However, in a Banach-space valued context, the Kurzweil integral properly contains that of Henstock. In the present paper, we consider abstract vector integrals of Kurzweil and prove Substitution...
En liaison avec le théorème d’Orlicz-Pettis, on étudie la plus fine topologie localement convexe sur un elc pour laquelle toute mesure définie sur une tribu et à valeurs dans est -bornée. Pour cela, on considère l’espace des formes linéaires sur telles que, pour toute suite sous-série convergente de , on ait . La topologie coïncide avec la topologie de Mackey ; elle est bornologique et tonnelée, mais ce n’est pas la topologie bornologique et tonnelée associée à . Ce point est...