Canonical embedding of function spaces into the topological bidual of .
We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.
We study compactness and related topological properties in the space L¹(m) of a Banach space valued measure m when the natural topologies associated to convergence of vector valued integrals are considered. The resulting topological spaces are shown to be angelic and the relationship of compactness and equi-integrability is explored. A natural norming subset of the dual unit ball of L¹(m) appears in our discussion and we study when it is a boundary. The (almost) complete continuity of the integration...
A characterization is given of those Banach-space-valued vector measures m with finite variation whose associated integration operator Iₘ: f ↦ ∫fdm is compact as a linear map from L¹(m) into the Banach space. Moreover, in every infinite-dimensional Banach space there exist nontrivial vector measures m (with finite variation) such that Iₘ is compact, and other m (still with finite variation) such that Iₘ is not compact. If m has infinite variation, then Iₘ is never compact.
We characterize some properties of a vector measure in terms of its associated Kluvánek conical measure. These characterizations are used to prove that the range of a vector measure determines these properties. So we give new proofs of the fact that the range determines the total variation, the σ-finiteness of the variation and the Bochner derivability, and we show that it also determines the (p,q)-summing and p-nuclear norm of the integration operator. Finally, we show that Pettis derivability...
We study properties of the space ℳ of Borel vector measures on a compact metric space X, taking values in a Banach space E. The space ℳ is equipped with the Fortet-Mourier norm and the semivariation norm ||·||(X). The integral introduced by K. Baron and A. Lasota plays the most important role in the paper. Investigating its properties one can prove that in most cases the space is contained in but not equal to the space (ℳ,||·||(X))*. We obtain a representation of the continuous functionals on...
In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for...