Page 1

Displaying 1 – 6 of 6

Showing per page

Maximal abelian subalgebras and projections in two Banach algebras associated with a topological dynamical system

Marcel de Jeu, Jun Tomiyama (2012)

Studia Mathematica

If Σ = (X,σ) is a topological dynamical system, where X is a compact Hausdorff space and σ is a homeomorphism of X, then a crossed product Banach *-algebra ℓ¹(Σ) is naturally associated with these data. If X consists of one point, then ℓ¹(Σ) is the group algebra of the integers. The commutant C(X)₁' of C(X) in ℓ¹(Σ) is known to be a maximal abelian subalgebra which has non-zero intersection with each non-zero closed ideal, and the same holds for the commutant C(X)'⁎ of C(X) in C*(Σ), the enveloping...

Multiplicative characterization of Hilbert spaces and other interesting classes of Banach spaces.

A. Rodríguez Palacios (1996)

Revista Matemática de la Universidad Complutense de Madrid

For a Banach space X, we show how the existence of a norm-one element u in X and a norm-one continuous bilinear mapping f: X x X --> X satisfying f(x,u) = f(u,x) = x for all x in X, together with some more intrinsic conditions, can be utilized to characterize X as a member of some relevant subclass of the class of Banach spaces.

Currently displaying 1 – 6 of 6

Page 1