The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let A be an A*-algebra with enveloping C*-algebra C*(A). We show that, under certain conditions, a homomorphism from C*(A) into a Banach algebra is continuous if and only if its restriction to A is continuous. We apply this result to the question in the title.
We generalize Wiener's inversion theorem for Fourier transforms on closed subsets of the dual group of a locally compact abelian group to cosets of ideals in a class of non-commutative *-algebras having specified properties, which are all fulfilled in the case of the group algebra of any locally compact abelian group.
Currently displaying 1 –
2 of
2