On a formula of le Merdy for the complex interpolation of tensor products.
We establish interpolation formulæ for operator spaces that are components of a given quasi-normed operator ideal. Sometimes we assume that one of the couples involved is quasi-linearizable, some other times we assume injectivity or surjectivity in the ideal. We also show the necessity of these suppositions.
Let , 0 ≤ t ≤ 1, be Banach spaces obtained via complex interpolation. With suitable hypotheses, linear operators T that act boundedly on both and will act boundedly on each . Let denote such an operator when considered on , and denote its spectrum. We are motivated by the question of whether or not the map is continuous on (0,1); this question remains open. In this paper, we study continuity of two related maps: (polynomially convex hull) and (boundary of the polynomially convex...
We give a description of the dual of a Calderón-Lozanovskiĭ intermediate space φ(X,Y) of a couple of Banach Köthe function spaces as an intermediate space ψ(X*,Y*) of the duals, associated with a "variable" function ψ.
It is shown that the main results of the theory of real interpolation, i.e. the equivalence and reiteration theorems, can be extended from couples to a class of (n+1)-tuples of Banach spaces, which includes (n+1)-tuples of Banach function lattices, Sobolev and Besov spaces. As an application of our results, it is shown that Lions' problem on interpolation of subspaces and Semenov's problem on interpolation of subcouples have positive solutions when all spaces are Banach function lattices or their...
Si definisce un nuovo tipo di spazi a partire da un dato spazio di Banach e da un operatore lineare in . Tali spazi si possono pensare come spazi di interpolazione con negativo.
For the complex interpolation method, Kouba proved an important interpolation formula for tensor products of Banach spaces. We give a partial extension of this formula in the injective case for the Gustavsson?Peetre method of interpolation within the setting of Banach function spaces.
This article deals with K- and J-spaces defined by means of polygons. First we establish some reiteration formulae involving the real method, and then we study the behaviour of weakly compact operators. We also show optimality of the weak compactness results.
We describe the geometric structure of the -characteristic of fractional powers of bounded or compact linear operators over domains with arbitrary measure. The description builds essentially on the Riesz-Thorin and Marcinkiewicz-Stein-Weiss- Ovchinnikov interpolation theorems, as well as on the Krasnosel’skij-Krejn factorization theorem.