Page 1

Displaying 1 – 3 of 3

Showing per page

B M O ψ -spaces and applications to extrapolation theory

Stefan Geiss (1997)

Studia Mathematica

We investigate a scale of B M O ψ -spaces defined with the help of certain Lorentz norms. The results are applied to extrapolation techniques concerning operators defined on adapted sequences. Our extrapolation works simultaneously with two operators, starts with B M O ψ - L -estimates, and arrives at L p - L p -estimates, or more generally, at estimates between K-functionals from interpolation theory.

Bases de Schauder dans certains espaces de fonctions holomorphes

Nguyen Thanh Van (1972)

Annales de l'institut Fourier

On étudie les bases de Schauder pour fonctions holomorphes et leurs applications à l’approximation et interpolation.Après avoir établi quelques faits généraux sur les bases et semi-bases, on les applique à l’étude des bases formées par une suite simple de polynômes.L’effort principal est porté sur la preuve de l’existence d’une “bonne” base commune des espaces des fonctions holomorphes sur Ω et χ , où Ω est un domaine de C et χ un compact dans Ω tels que Ω χ soit un domaine régulier pour le problème...

Bilinear operators and limiting real methods

Fernando Cobos, Alba Segurado (2014)

Banach Center Publications

We investigate the behaviour of bilinear operators under limiting real methods. As an application, we show an interpolation formula for spaces of linear operators. Some results on norm estimates for bounded linear operators are also established.

Currently displaying 1 – 3 of 3

Page 1