Of-groups of crossed products by groups acting on trees.
We establish interpolation formulæ for operator spaces that are components of a given quasi-normed operator ideal. Sometimes we assume that one of the couples involved is quasi-linearizable, some other times we assume injectivity or surjectivity in the ideal. We also show the necessity of these suppositions.
A certain class of Arens-Michael algebras having no non-zero injective topological ⨶-modules is introduced. This class is rather wide and contains, in particular, algebras of holomorphic functions on polydomains in , algebras of smooth functions on domains in , algebras of formal power series, and, more generally, any nuclear Fréchet-Arens-Michael algebra which has a free bimodule Koszul resolution.
Suppose that A and B are unital Banach algebras with units and , respectively, M is a unital Banach A,B-module, is the triangular Banach algebra, X is a unital -bimodule, , , and . Applying two nice long exact sequences related to A, B, , X, , , and we establish some results on (co)homology of triangular Banach algebras.
Let , 0 ≤ t ≤ 1, be Banach spaces obtained via complex interpolation. With suitable hypotheses, linear operators T that act boundedly on both and will act boundedly on each . Let denote such an operator when considered on , and denote its spectrum. We are motivated by the question of whether or not the map is continuous on (0,1); this question remains open. In this paper, we study continuity of two related maps: (polynomially convex hull) and (boundary of the polynomially convex...