Nearly ring homomorphisms and nearly ring derivations on non-Archimedean Banach algebras.
Page 1
Gordji, Madjid Eshaghi (2010)
Abstract and Applied Analysis
Lowen, R., Srivastava, A.K., Wuyts, P. (1989)
International Journal of Mathematics and Mathematical Sciences
Kiyosawa, T., Schikhof, W.H. (1996)
International Journal of Mathematics and Mathematical Sciences
De Grande-De Kimpe, N., Perez-Garcia, C. (1994)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Luc Duponcheel (1986)
Compositio Mathematica
Albert Kubzdela (2005)
Banach Center Publications
We study Banach spaces over a non-spherically complete non-Archimedean valued field K. We prove that a non-Archimedean Banach space over K which contains a linearly homeomorphic copy of (hence itself) is not a K-space. We discuss the three-space problem for a few properties of non-Archimedean Banach spaces.
Wilhom H. Schikhof (1978/1979)
Groupe de travail d'analyse ultramétrique
Costa Soares, Maria Zoraide M. (1980)
Portugaliae mathematica
Nicole de Grande-de Kimpe (1981/1982)
Groupe de travail d'analyse ultramétrique
Katsaras, A.K., Petalas, C., Vidalis, T. (1994)
Acta Mathematica Universitatis Comenianae. New Series
Ann Verdoodt (1998)
Annales mathématiques Blaise Pascal
Luc Duponcheel (1984)
Compositio Mathematica
Lüdkovsky, S.V. (2005)
International Journal of Mathematics and Mathematical Sciences
Steven M. Moore (1980)
Revista colombiana de matematicas
Ann Verdoodt (1993)
Publicacions Matemàtiques
Ann Verdoodt (1994)
Publicacions Matemàtiques
Let K be a non-archimedean valued field which contains Qp and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn|n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq → K) is the Banach space of continuous functions from Vq to K, equipped with the supremum norm. Our aim is to find normal bases (rn(x)) for C(Vq → K), where rn(x) does not have to be a polynomial.
S. Evrard (2008)
Acta Arithmetica
Page 1