Idéaux de fonctions analytiques bornées stables par dérivation
Nous désirons savoir si l’opérateur différentiel d’ordre , où est une matrice à coefficients rationnels, a un indice dans l’espace des fonctions analytiques dans une boule; dans le cas où cet indice existe nous voulons aussi le calculer. Dans le cas où nous montrons l’existence d’un indice (si l’exposant de l’opérateur n’est pas Liouville -adique) et nous montrons comment calculer cet indice. De même nous savons montrer l’existence d’un indice et comment calculer cet indice lorsque le système...
This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set in a biequivalence vector space , such that for distinct , contains an infinite independent subset. Consequently, a class is dimensionally compact iff the -equivalence is compact on . This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.
In this paper, following the -adic integration theory worked out by A. F. Monna and T. A. Springer [4, 5] and generalized by A. C. M. van Rooij and W. H. Schikhof [6, 7] for the spaces which are not -compacts, we study the class of integrable -adic functions with respect to Bernoulli measures of rank . Among these measures, we characterize those which are invertible and we give their inverse in the form of series.