Page 1

Displaying 1 – 20 of 20

Showing per page

On the ultrametric Stone-Weierstrass theorem and Mahler's expansion

Paul-Jean Cahen, Jean-Luc Chabert (2002)

Journal de théorie des nombres de Bordeaux

We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If E is a subset of a rank-one valuation domain V , we show that the ring of polynomial functions is dense in the ring of continuous functions from E to V if and only if the topological closure E ^ of E in the completion V ^ of V is compact. We then show how to expand continuous functions in sums of polynomials.

On topological classification of non-archimedean Fréchet spaces

Wiesƚaw Śliwa (2004)

Czechoslovak Mathematical Journal

We prove that any infinite-dimensional non-archimedean Fréchet space E is homeomorphic to D where D is a discrete space with c a r d ( D ) = d e n s ( E ) . It follows that infinite-dimensional non-archimedean Fréchet spaces E and F are homeomorphic if and only if d e n s ( E ) = d e n s ( F ) . In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field 𝕂 is homeomorphic to the non-archimedean Fréchet space 𝕂 .

On weighted inductive limits of non-Archimedean spaces of continuous functions

A. K. Katsaras, V. Benekas (2000)

Bollettino dell'Unione Matematica Italiana

Si studiano alcune proprietà di un certo limite induttivo di spazi non-archimedei di funzioni continue. In particolare, si esamina la completezza di questo limite induttivo e si indaga il problema di quando lo spazio coincide con il proprio inviluppo proiettivo.

Orthonormal bases for spaces of continuous and continuously differentiable functions defined on a subset of Zp.

Ann Verdoodt (1996)

Revista Matemática de la Universidad Complutense de Madrid

Let K be a non-Archimedean valued field which contains Qp, and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn | n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq --> K) (resp. C1(Vq --> K)) is the Banach space of continuous functions (resp. continuously differentiable functions) from Vq to K. Our aim is to find orthonormal bases for C(Vq --> K) and C1(Vq --> K).

Currently displaying 1 – 20 of 20

Page 1