Selected papers from the 10th international conference 2009 on nonlinear functional analysis and applications, Seoul, Korea, July 27--31, 2009.
Sobczyk's theorem asserts that every c₀-valued operator defined on a separable Banach space can be extended to every separable superspace. This paper is devoted to obtaining the most general vector valued version of the theorem, extending and completing previous results of Rosenthal, Johnson-Oikhberg and Cabello. Our approach is homological and nonlinear, transforming the problem of extension of operators into the problem of approximating z-linear maps by linear maps.
The purpose of this paper is to establish some common fixed point results for -nondecreasing mappings which satisfy some nonlinear contractions of rational type in the framework of metric spaces endowed with a partial order. Also, as a consequence, a result of integral type for such class of mappings is obtained. The proved results generalize and extend some of the results of J. Harjani, B. Lopez, K. Sadarangani (2010) and D. S. Jaggi (1977).
We study the structure of Lipschitz and Hölder-type spaces and their preduals on general metric spaces, and give applications to the uniform structure of Banach spaces. In particular we resolve a problem of Weaver who asks wether if M is a compact metric space and 0 < α < 1, it is always true the space of Hölder continuous functions of class α is isomorphic to l∞. We show that, on the contrary, if M is a compact convex subset of a Hilbert space this isomorphism holds if and only if...
Given a compact manifold , an integer and an exponent , we prove that the class of smooth maps on the cube with values into is dense with respect to the strong topology in the Sobolev space when the homotopy group of order is trivial. We also prove density of maps that are smooth except for a set of dimension , without any restriction on the homotopy group of .