Banach-Stone Theorems for Banach Manifolds.
We answer a question of Aharoni by showing that every separable metric space can be Lipschitz 2-embedded into c₀ and this result is sharp; this improves earlier estimates of Aharoni, Assouad and Pelant. We use our methods to examine the best constant for Lipschitz embeddings of the classical -spaces into c₀ and give other applications. We prove that if a Banach space embeds almost isometrically into c₀, then it embeds linearly almost isometrically into c₀. We also study Lipschitz embeddings into...
Bourgain’s discretization theorem asserts that there exists a universal constant with the following property. Let be Banach spaces with . Fix and set . Assume that is a -net in the unit ball of and that admits a bi-Lipschitz embedding into with distortion at most . Then the entire space admits a bi-Lipschitz embedding into with distortion at most . This mostly expository article is devoted to a detailed presentation of a proof of Bourgain’s theorem.We also obtain an improvement...