Page 1

Displaying 1 – 5 of 5

Showing per page

Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows

Andrea Bonito, Philippe Clément, Marco Picasso (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

A simplified stochastic Hookean dumbbells model arising from viscoelastic flows is considered, the convective terms being disregarded. A finite element discretization in space is proposed. Existence of the numerical solution is proved for small data, so as a priori error estimates, using an implicit function theorem and regularity results obtained in [Bonito et al., J. Evol. Equ.6 (2006) 381–398] for the solution of the continuous problem. A posteriori error estimates are also derived. Numerical...

Fréchet differentiability via partial Fréchet differentiability

Luděk Zajíček (2023)

Commentationes Mathematicae Universitatis Carolinae

Let X 1 , , X n be Banach spaces and f a real function on X = X 1 × × X n . Let A f be the set of all points x X at which f is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if X 1 , , X n - 1 are Asplund spaces and f is continuous (respectively Lipschitz) on X , then A f is a first category set (respectively a σ -upper porous set). We also prove that if X , Y are separable Banach spaces and f : X Y is a Lipschitz mapping, then there exists a σ -upper porous set A X such that f is Fréchet differentiable at every...

Fully summing mappings between Banach spaces

Mário C. Matos, Daniel M. Pellegrino (2007)

Studia Mathematica

We introduce and investigate the non-n-linear concept of fully summing mappings; if n = 1 this concept coincides with the notion of nonlinear absolutely summing mappings and in this sense this article unifies these two theories. We also introduce a non-n-linear definition of Hilbert-Schmidt mappings and sketch connections between this concept and fully summing mappings.

Currently displaying 1 – 5 of 5

Page 1