On coarse embeddability into -spaces and a conjecture of Dranishnikov
We show that the Hilbert space is coarsely embeddable into any for 1 ≤ p ≤ ∞. It follows that coarse embeddability into ℓ₂ and into are equivalent for 1 ≤ p < 2.
We show that the Hilbert space is coarsely embeddable into any for 1 ≤ p ≤ ∞. It follows that coarse embeddability into ℓ₂ and into are equivalent for 1 ≤ p < 2.
We prove that if X is an infinite-dimensional Banach space with smooth partitions of unity then X and X∖ K are diffeomorphic for every weakly compact set K ⊂ X.
In this paper sufficient conditions are given in order that every distribution invariant under a Lie group extend from the set of orbits of maximal dimension to the whole of the space. It is shown that these conditions are satisfied for the n-point action of the pure Lorentz group and for a standard action of the Lorentz group of arbitrary signature.
Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated -ideals are studied. These -ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.
Albeverio, Kondratiev, and Röckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space of any manifold . The name comes from the fact that various elements of the geometry of are constructed via lifting of the corresponding elements of the geometry of . In this note, we construct a general algebraic framework for lifted geometry which can be applied to various “infinite dimensional spaces” associated to . In order to define a lifted...
We study the set f’(X) = f’(x): x ∈ X when f:X → ℝ is a differentiable bump. We first prove that for any C²-smooth bump f: ℝ² → ℝ the range of the derivative of f must be the closure of its interior. Next we show that if X is an infinite-dimensional separable Banach space with a -smooth bump b:X → ℝ such that is finite, then any connected open subset of X* containing 0 is the range of the derivative of a -smooth bump. We also study the finite-dimensional case which is quite different. Finally,...
We survey recent results on the structure of the range of the derivative of a smooth real valued function f defined on a real Banach space X and of a smooth mapping F between two real Banach spaces X and Y. We recall some necessary conditions and some sufficient conditions on a subset A of L(X,Y) for the existence of a Fréchet-differentiable mapping F from X into Y so that F'(X) = A. Whenever F is only assumed Gâteaux-differentiable, new phenomena appear: we discuss the existence of a mapping F...
A subset of is called a universal differentiability set if it contains a point of differentiability of every Lipschitz function . We show that any universal differentiability set contains a ‘kernel’ in which the points of differentiability of each Lipschitz function are dense. We further prove that no universal differentiability set may be decomposed as a countable union of relatively closed, non-universal differentiability sets.
Let F = ind lim Fₙ be an infinite-dimensional LF-space with density dens F = τ ( ≥ ℵ ₀) such that some Fₙ is infinite-dimensional and dens Fₙ = τ. It is proved that every open subset of F is homeomorphic to the product of an ℓ₂(τ)-manifold and (hence the product of an open subset of ℓ₂(τ) and ). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.