-convexity and best approximation.
We show for and subspaces of quotients of with a -unconditional finite-dimensional Schauder decomposition that is an -ideal in .
We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces and the subspace of all compact operators is an -ideal in the space of all continuous linear operators whenever and are - and -ideals in and , respectively, with and . We also prove that the -ideal in is separably determined. Among others, our results complete and improve some well-known results...
We give criteria for domination of strongly continuous semigroups in ordered Banach spaces that are not necessarily lattices, and thus obtain generalizations of certain results known in the lattice case. We give applications to semigroups generated by differential operators in function spaces which are not lattices.
Let 𝓛 be a subspace lattice on a Banach space X and let δ: Alg𝓛 → B(X) be a linear mapping. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L}= X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0), we show that the following three conditions are equivalent: (1) δ(AB) = δ(A)B + Aδ(B) whenever AB = 0; (2) δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = 0; (3) δ is a generalized derivation and δ(I) ∈ (Alg𝓛)'. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L} = X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0) and δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A)...
Let θ : ℳ → 𝓝 be a zero-product preserving linear map between algebras. We show that under some mild conditions θ is a product of a central element and an algebra homomorphism. Our result applies to matrix algebras, standard operator algebras, C*-algebras and W*-algebras.
Let A and B be Banach function algebras on compact Hausdorff spaces X and Y, respectively, and let and be their uniform closures. Let I, I′ be arbitrary non-empty sets, α ∈ ℂ{0, ρ: I → A, τ: l′ → a and S: I → B T: l′ → B be maps such that ρ(I, τ(I′) and S(I), T(I′) are closed under multiplications and contain exp A and expB, respectively. We show that if ‖S(p)T(p′)−α‖Y=‖ρ(p)τ(p′) − α‖x for all p ∈ I and p′ ∈ I′, then there exist a real algebra isomorphism S: A → B, a clopen subset K of M B and...
The set of all bounded linear idempotent operators on a Banach space X is a poset with the partial order defined by P ≤ Q if PQ = QP = P. Another natural relation on the set of idempotent operators is the orthogonality relation defined by P ⊥ Q ⇔ PQ = QP = 0. We briefly survey known theorems on maps on idempotents preserving order or orthogonality. We discuss some related results and open problems. The connections with physics, geometry, theory of automorphisms, and linear preserver problems will...