On the Taylor functional calculus
We give a Martinelli-Vasilescu type formula for the Taylor functional calculus and a simple proof of its basic properties.
We give a Martinelli-Vasilescu type formula for the Taylor functional calculus and a simple proof of its basic properties.
Suppose and are two families of semigroups on a Banach space X (not necessarily of class C₀) such that for some initial datum u₀, G₁(t)u₀ tends towards an undesirable state u*. After remedying by means of an operator ρ we continue the evolution of the state by applying G₂(t) and after time 2t we retrieve a prosperous state u given by u = G₂(t)ρG₁(t)u₀. Here we are concerned with various properties of the semigroup (t): ρ → G₂(t)ρG₁(t). We define (X) to be the space of remedial operators for...
The aim of this note is to characterize the vectors g = (g1, . . . ,gk) of bounded holomorphic functions in the unit ball or in the unit polydisk of Cn such that the Corona is true for them in terms of the H2 Corona for measures on the boundary.
It is well-known that the topological boundary of the spectrum of an operator is contained in the approximate point spectrum. We show that the one-sided version of this result is not true. This gives also a negative answer to a problem of Schmoeger.
In the present paper, we give the lower estimation for the topological dimension of the fixed points set of a condensing continuous multimap in a Banach space. The abstract result is applied to the fixed point set of the multioperator of the form where is the superposition multioperator generated by the Carathéodory type multifunction F and S is the shift of a linear injective operator. We present sufficient conditions under which this set has the infinite topological dimension. In the last...
We describe the topological reflexive closure of the isometry group of the suspension of B(H).
We define the transient and recurrent parts of a quantum Markov semigroup 𝓣 on a von Neumann algebra 𝓐 and we show that, when 𝓐 is σ-finite, we can write 𝓣 as the sum of such semigroups. Moreover, if 𝓣 is the countable direct sum of irreducible semigroups each with a unique faithful normal invariant state ρₙ, we find conditions under which any normal invariant state is a convex combination of ρₙ's.
In this paper, we prove sufficient conditions on pairs of weights (u,v) (scalar, matrix or operator valued) so that the Hilbert transform H f(x) = p.v. ∫ [f(y) / x - y] dy,is bounded from L2(u) to L2(v).
It is proved in [1],[2] that in odd dimensional spaces any uniform decay of the local energy implies that it must decay exponentially. We extend this to even dimensional spaces and to more general perturbations (including the transmission problem) showing that any uniform decay of the local energy implies that it must decay like O(t^(−2n) ), t ≫ 1 being the time and n being the space dimension.
Let T be a power-bounded linear operator in a real Banach space X. We study the equality (*) . For X separable, we show that if T satisfies and is not uniformly ergodic, then contains an isomorphic copy of an infinite-dimensional dual Banach space. Consequently, if X is separable and does not contain isomorphic copies of infinite-dimensional dual Banach spaces, then (*) is equivalent to uniform ergodicity. As an application, sufficient conditions for uniform ergodicity of irreducible Markov chains...