Bounded approximants to monotone operators on Banach spaces
A normal Banach quasi *-algebra (,) has a distinguished Banach *-algebra consisting of bounded elements of . The latter *-algebra is shown to coincide with the set of elements of having finite spectral radius. If the family () of bounded invariant positive sesquilinear forms on contains sufficiently many elements then the Banach *-algebra of bounded elements can be characterized via a C*-seminorm defined by the elements of ().
We continue our study of topological partial *-algebras, focusing on the interplay between various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between strong and weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *-algebras, emphasizing the crucial role played by appropriate bounded elements, called ℳ-bounded. Finally,...
Characterizations of pairs (E,F) of complete (LF)?spaces such that every continuous linear map from E to F maps a 0?neighbourhood of E into a bounded subset of F are given. The case of sequence (LF)?spaces is also considered. These results are similar to the ones due to D. Vogt in the case E and F are Fréchet spaces. The research continues work of J. Bonet, A. Galbis, S. Önal, T. Terzioglu and D. Vogt.
Let v be a standard weight on the upper half-plane , i.e. v: → ]0,∞[ is continuous and satisfies v(w) = v(i Im w), w ∈ , v(it) ≥ v(is) if t ≥ s > 0 and . Put v₁(w) = Im wv(w), w ∈ . We characterize boundedness and surjectivity of the differentiation operator D: Hv() → Hv₁(). For example we show that D is bounded if and only if v is at most of moderate growth. We also study composition operators on Hv().
Let T be a multicyclic operator defined on some Banach space. Bounded point evaluations and analytic bounded point evaluations for T are defined to generalize the cyclic case. We extend some known results on cyclic operators to the more general setting of multicyclic operators on Banach spaces. In particular we show that if T satisfies Bishop’s property (β), then . We introduce the concept of analytic structures and we link it to different spectral quantities. We apply this concept to retrieve...
Let be the space of all complex m × n matrices. The generalized unit disc in is >br> . Here is the unit matrix. If 1 ≤ p < ∞ and α > -1, then is defined to be the space , where is the Lebesgue measure in , and is the subspace of holomorphic functions. In [8,9] M. M. Djrbashian and A. H. Karapetyan proved that, if (for 1 < p < ∞) and Re β ≥ α (for p = 1), then where is the integral operator defined by (0.13)-(0.14). In the present paper, given 1 ≤ p <...
We prove a sufficient condition for products of Toeplitz operators , where f,g are square integrable holomorphic functions in the unit ball in ℂⁿ, to be bounded on the weighted Bergman space. This condition slightly improves the result obtained by K. Stroethoff and D. Zheng. The analogous condition for boundedness of products of Hankel operators is also given.
We study when a weighted composition operator acting between different weighted Bergman spaces is bounded, resp. compact.
We discuss implication relations for boundedness and growth orders of Cesàro means and Abel means of discrete semigroups and continuous semigroups of linear operators. Counterexamples are constructed to show that implication relations between two Cesàro means of different orders or between Cesàro means and Abel means are in general strict, except when the space has dimension one or two.
The purpose of this article is to obtain a multidimensional extension of Lacey and Thiele's result on the boundedness of a model sum which plays a crucial role in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a simplification of the original proof of Lacey and Thiele modeled after the presentation of Bilyk and Grafakos.