The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give some theorems on continuity and differentiability with respect to (h,t) of the solution of a second order evolution problem with parameter . Our main tool is the theory of strongly continuous cosine families of linear operators in Banach spaces.
The spectral structure of the infinitesimal generator of a strongly continuous cosine function of linear bounded operators is investigated, under assumptions on the almost periodic behaviour of applications generated, in various ways, by C. Moreover, a first approach is presented to the analysis of connection between cosine functions and dynamical systems.
We extend some recent results for regularized semigroups to strongly continuous n-times integrated C-cosine operator functions. Several equivalent conditions for the existence and uniqueness of solutions of (ACP) are also presented.
Currently displaying 1 –
4 of
4