The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
If A generates a bounded cosine function on a Banach space X then the negative square root B of A generates a holomorphic semigroup, and this semigroup is the conjugate potential transform of the cosine function. This connection is studied in detail, and it is used for a characterization of cosine function generators in terms of growth conditions on the semigroup generated by B. The characterization relies on new results on the inversion of the vector-valued conjugate potential transform.
We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity...
A two-sided sequence with values in a complex unital Banach algebra is a cosine sequence if it satisfies for any n,m ∈ ℤ with c₀ equal to the unity of the algebra. A cosine sequence is bounded if . A (bounded) group decomposition for a cosine sequence is a representation of c as for every n ∈ ℤ, where b is an invertible element of the algebra (satisfying , respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, here referred...
A two-sided sequence with values in a complex unital Banach algebra is a cosine sequence if it satisfies for any n,m ∈ ℤ with c₀ equal to the unity of the algebra. A cosine sequence is bounded if . A (bounded) group decomposition for a cosine sequence is a representation of c as for every n ∈ ℤ, where b is an invertible element of the algebra (satisfying , respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, the so-called...
Let be a reflexive Banach space and be a closed operator in an -space of -valued functions. Then we characterize the range of as follows. Let for all , where denotes the resolvent set of , and assume that and . Furthermore, assume that there exists such that . Then is equivalent to . This generalizes Shaw’s result for scalar-valued functions.
Currently displaying 1 –
10 of
10