Periodic solutions of some linear systems of differential equations.
Mathematics Subject Classification: 35J05, 35J25, 35C15, 47H50, 47G30We consider an impedance boundary-value problem for the Helmholtz equation which models a wave diffraction problem with imperfect conductivity on a strip. Pseudo-differential operators are used to deal with this wave diffraction problem. Therefore, single and double layer potentials allow a reformulation of the problem into a system of integral equations. By using operator theoretical methods, the well-posedness of the problem...
We introduce pseudodifferential operators (of infinite order) in the framework of non-quasianalytic classes of Beurling type. We prove that such an operator with (distributional) kernel in a given Beurling class is pseudo-local and can be locally decomposed, modulo a smoothing operator, as the composition of a pseudodifferential operator of finite order and an ultradifferential operator with constant coefficients in the sense of Komatsu, both operators with kernel in the same class . We also...
We study in this paper a notion of pseudo-spectrum in the semi-classical setting called injectivity pseudo-spectrum. The injectivity pseudo-spectrum is a subset of points in the complex plane where there exist some quasi-modes with a precise rate of decay. For that reason, these values can be considered as some ‘almost eigenvalues’ in the semi-classical limit. We are interested here in studying the absence of injectivity pseudo-spectrum, which is characterized by a global a priori estimate. We prove...