estimates for weakly strongly singular integral operators on spaces of homogeneous type
We construct the heat kernel of the 1/2-order Laplacian perturbed by a first-order gradient term in Hölder spaces and a zero-order potential term in a generalized Kato class, and obtain sharp two-sided estimates as well as a gradient estimate of the heat kernel, where the proof of the lower bound is based on a probabilistic approach.
We consider the fractional Laplacian on an open subset in with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet fractional Laplacian in open sets. This heat kernel is also the transition density of a rotationally symmetric -stable process killed upon leaving a open set. Our results are the first sharp twosided estimates for the Dirichlet heat kernel of a non-local operator on open sets.
The aim of this paper is to extend the study of Riesz transforms associated to Dunkl Ornstein-Uhlenbeck operator considered by A. Nowak, L. Roncal and K. Stempak to higher order.
This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...