Page 1

Displaying 1 – 17 of 17

Showing per page

Mathematical and numerical analysis of radiative heat transfer in semi-transparent media

Yao-Chuang Han, Yu-Feng Nie, Zhan-Bin Yuan (2019)

Applications of Mathematics

This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm...

Measure-geometric Laplacians for partially atomic measures

Marc Kesseböhmer, Tony Samuel, Hendrik Weyer (2020)

Commentationes Mathematicae Universitatis Carolinae

Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure η supported on a compact subset of U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator η and a second order differential operator Δ η , with respect to η . We generalize this approach to measures of the form η : = ν + δ , where ν is non-atomic and δ is finitely supported. We determine analytic...

Meilleure approximation polynomiale et croissance des fonctions entières sur certaines variétés algébriques affines

Ahmed Zeriahi (1987)

Annales de l'institut Fourier

Soit K un compact polynomialement convexe de C n et V K son “potentiel logarithmique extrémal” dans C n . Supposons que K est régulier (i.e. V K continue) et soit f une fonction holomorphe sur un voisinage de K . On construit alors une suite { P } 1 de polynôme de n variables complexes avec deg ( P ) pour 1 , telle que l’erreur d’approximation max z K | f ( z ) - P ( z ) | soit contrôlée de façon assez précise en fonction du “pseudorayon de convergence” de f par rapport à K et du degré de convergence . Ce résultat est ensuite utilisé pour étendre...

Modulation invariant and multilinear singular integral operators

Michael Christ (2005/2006)

Séminaire Bourbaki

In a series of papers beginning in the late 1990s, Michael Lacey and Christoph Thiele have resolved a longstanding conjecture of Calderón regarding certain very singular integral operators, given a transparent proof of Carleson’s theorem on the almost everywhere convergence of Fourier series, and initiated a slew of further developments. The hallmarks of these problems are multilinearity as opposed to mere linearity, and especially modulation symmetry. By modulation is meant multiplication by characters...

Modulation space estimates for multilinear pseudodifferential operators

Árpád Bényi, Kasso A. Okoudjou (2006)

Studia Mathematica

We prove that for symbols in the modulation spaces p , q , p ≥ q, the associated multilinear pseudodifferential operators are bounded on products of appropriate modulation spaces. In particular, the symbols we study here are defined without any reference to smoothness, but rather in terms of their time-frequency behavior.

Moser's Inequality for a class of integral operators

Finbarr Holland, David Walsh (1995)

Studia Mathematica

Let 1 < p < ∞, q = p/(p-1) and for f L p ( 0 , ) define F ( x ) = ( 1 / x ) ʃ 0 x f ( t ) d t , x > 0. Moser’s Inequality states that there is a constant C p such that s u p a 1 s u p f B p ʃ 0 e x p [ a x q | F ( x ) | q - x ] d x = C p where B p is the unit ball of L p . Moreover, the value a = 1 is sharp. We observe that F = K 1 f where the integral operator K 1 has a simple kernel K. We consider the question of for what kernels K(t,x), 0 ≤ t, x < ∞, this result can be extended, and proceed to discuss this when K is non-negative and homogeneous of degree -1. A sufficient condition on K is found for the analogue...

Multilinear almost diagonal estimates and applications

Árpád Bényi, Nikolaos Tzirakis (2004)

Studia Mathematica

We prove that an almost diagonal condition on the (m + 1)-linear tensor associated to an m-linear operator implies boundedness of the operator on products of classical function spaces. We then provide applications to the study of certain singular integral operators.

Currently displaying 1 – 17 of 17

Page 1