A remark on Gwinner's existence theorem on variational inequality problem.
Let Y be a subgroup of an abelian group X and let T be a given collection of subsets of a linear space E over the rationals. Moreover, suppose that F is a subadditive set-valued function defined on X with values in T. We establish some conditions under which every additive selection of the restriction of F to Y can be extended to an additive selection of F. We also present some applications of results of this type to the stability of functional equations.
We consider a class of singularly perturbed systems of semilinear parabolic differential inclusions in infinite dimensional spaces. For such a class we prove a Tikhonov-type theorem for a suitably defined subset of the set of all solutions for ε ≥ 0, where ε is the perturbation parameter. Specifically, assuming the existence of a Lipschitz selector of the involved multivalued maps we can define a nonempty subset of the solution set of the singularly perturbed system. This subset is the set of...
∗ The work is partially supported by NSFR Grant No MM 409/94.We develop an abstract subdifferential calculus for lower semicontinuous functions and investigate functions similar to convex functions. As application we give sufficient conditions for the integrability of a lower semicontinuous function.
2000 Mathematics Subject Classification: 47H04, 65K10.In this paper we investigate the existence of a sequence (xk ) satisfying 0 ∈ f (xk )+ ∇f (xk )(xk+1 − xk )+ 1/2 ∇2 f (xk )(xk+1 − xk )^2 + G(xk+1 ) and converging to a solution x∗ of the generalized equation 0 ∈ f (x) + G(x); where f is a function and G is a set-valued map acting in Banach spaces.
The existence results for an abstract Cauchy problem involving a higher order differential inclusion with infinite delay in a Banach space are obtained. We use the concept of the existence family to express the mild solutions and impose the suitable conditions on the nonlinearity via the measure of noncompactness in order to apply the theory of condensing multimaps for the demonstration of our results. An application to some classes of partial differential equations is given.
We prove a fixed point theorem for Borsuk continuous mappings with spherical values, which extends a previous result. We apply some nonstandard properties of the Stiefel-Whitney classes.
Given a nonempty convex set in a locally convex Hausdorff topological vector space, a nonempty set and two set-valued mappings , we prove that under suitable conditions one can find an which is simultaneously a fixed point for and a common point for the family of values of . Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.
2000 Mathematics Subject Classification: 47H04, 65K10.In this article, we study a general iterative procedure of the following form 0 ∈ f(xk)+F(xk+1), where f is a function and F is a set valued map acting from a Banach space X to a linear normed space Y, for solving generalized equations in the nonsmooth framework. We prove that this method is locally Q-linearly convergent to x* a solution of the generalized equation 0 ∈ f(x)+F(x) if the set-valued map [f(x*)+g(·)−g(x*)+F(·)]−1 is Aubin continuous...