The search session has expired. Please query the service again.
Let be a cone in a Hilbert space , be an accretive mapping (equivalently, be a dissipative mapping) and be a nonexpansive mapping. In this paper, some fixed point theorems for mappings of the type are established. As an application, we utilize the results presented in this paper to study the existence problem of solutions for some kind of nonlinear integral equations in .
The purpose of this paper is to present several fixed point theorems for the so-called set-valued Y-contractions. Set-valued Y-contractions in ordered metric spaces, set-valued graphic contractions, set-valued contractions outside a bounded set and set-valued operators on a metric space with cyclic representations are considered.
Some new fixed point results are established for mappings of the form with compact and pseudocontractive.
Currently displaying 1 –
4 of
4