The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Integro-differential equations on time scales with Henstock-Kurzweil delta integrals

Aneta Sikorska-Nowak (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we prove existence theorems for integro - differential equations x Δ ( t ) = f ( t , x ( t ) , t k ( t , s , x ( s ) ) Δ s ) , t ∈ Iₐ = [0,a] ∩ T, a ∈ R₊, x(0) = x₀ where T denotes a time scale (nonempty closed subset of real numbers R), Iₐ is a time scale interval. Functions f,k are Carathéodory functions with values in a Banach space E and the integral is taken in the sense of Henstock-Kurzweil delta integral, which generalizes the Henstock-Kurzweil integral. Additionally, functions f and k satisfy some boundary conditions and conditions...

Invariant sets and Knaster-Tarski principle

Krzysztof Leśniak (2012)

Open Mathematics

Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.

Currently displaying 1 – 2 of 2

Page 1