Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem.
In this paper we introduce a property and use this property to prove some common fixed point theorems in b-metric space. We also give some fixed point results on b-metric spaces endowed with an arbitrary binary relation which can be regarded as consequences of our main results. As applications, we applying our result to prove the existence of a common solution for the following system of integral equations: x (t) = ∫ a b K 1 (t,r,x(r)) dr, x (t) = ∫ a b K 2 (t,r,x(r)) dr, where a, b...
We give conditions which guarantee the existence of positive solutions for a variety of arbitrary order boundary value problems for which all boundary conditions involve functionals, using the well-known Krasnosel'skiĭ fixed point theorem. The conditions presented here deal with a variety of problems, which correspond to various functionals, in a uniform way. The applicability of the results obtained is demonstrated by a numerical application.
The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.
In this work, we are interested in the existence of solutions for a class of first order boundary value problems (BVPs for short). We give new sufficient conditions under which the considered problems have at least one solution, one nonnegative solution and two non trivial nonnegative solutions, respectively. To prove our main results we propose a new approach based upon recent theoretical results. The results complement some recent ones.
The Cauchy problem for an infinite system of parabolic type equations is studied. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. We prove the existence and uniqueness of a bounded solution under Carathéodory type conditions and its differentiability, as well as the existence and uniqueness in the class of functions satisfying a natural growth condition. Both results are obtained by the fixed point method.
In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.