Displaying 441 – 460 of 1323

Showing per page

Existence of a common solution for a system of nonlinear integral equations via fixed point methods inb-metric spaces

Oratai Yamaod, Wutiphol Sintunavarat, Yeol Je Cho (2016)

Open Mathematics

In this paper we introduce a property and use this property to prove some common fixed point theorems in b-metric space. We also give some fixed point results on b-metric spaces endowed with an arbitrary binary relation which can be regarded as consequences of our main results. As applications, we applying our result to prove the existence of a common solution for the following system of integral equations: x (t) =  ∫ a b K 1  (t,r,x(r)) dr, x (t) =  ∫ a b K 2  (t,r,x(r)) dr,       x ( t ) = a b K 1 ( t , r , x ( r ) ) d r , x ( t ) = a b K 2 ( t , r , x ( r ) ) d r , where a, b...

Existence of positive solutions for a class of arbitrary order boundary value problems involving nonlinear functionals

Kyriakos G. Mavridis (2014)

Annales Polonici Mathematici

We give conditions which guarantee the existence of positive solutions for a variety of arbitrary order boundary value problems for which all boundary conditions involve functionals, using the well-known Krasnosel'skiĭ fixed point theorem. The conditions presented here deal with a variety of problems, which correspond to various functionals, in a uniform way. The applicability of the results obtained is demonstrated by a numerical application.

Existence of positive solutions for a fractional boundary value problem with lower-order fractional derivative dependence on the half-line

Amina Boucenna, Toufik Moussaoui (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.

Existence of solutions for a class of first order boundary value problems

Amirouche Mouhous a, Svetlin Georgiev Georgiev b, Karima Mebarki c (2022)

Archivum Mathematicum

In this work, we are interested in the existence of solutions for a class of first order boundary value problems (BVPs for short). We give new sufficient conditions under which the considered problems have at least one solution, one nonnegative solution and two non trivial nonnegative solutions, respectively. To prove our main results we propose a new approach based upon recent theoretical results. The results complement some recent ones.

Existence of solutions for infinite systems of parabolic equations with functional dependence

Anna Pudełko (2005)

Annales Polonici Mathematici

The Cauchy problem for an infinite system of parabolic type equations is studied. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. We prove the existence and uniqueness of a bounded solution under Carathéodory type conditions and its differentiability, as well as the existence and uniqueness in the class of functions satisfying a natural growth condition. Both results are obtained by the fixed point method.

Currently displaying 441 – 460 of 1323