Über die Fixpunktmengen einer Klasse Volterrascher Integraloperatoren in Banachräumen.
In this Note we first establish a result on the structure of the set of fixed points of a multi-valued contraction with convex values. As a consequence of this result, we then obtain the following theorem: Let , be two real Banach spaces and let be a continuous linear operator from onto . Put: . Then, for every and every lipschitzian operator , with Lipschitz constant such that , the set is non-empty and arc wise connected.
In this paper we use the upper and lower solutions method combined with Schauder's fixed point theorem and a fixed point theorem for condensing multivalued maps due to Martelli to investigate the existence of solutions for some classes of partial Hadamard fractional integral equations and inclusions.