General system of strongly pseudomonotone nonlinear variational inequalities based on projection systems.
A model of chemotaxis is analyzed that prevents blow-up of solutions. The model consists of a system of nonlinear partial differential equations for the spatial population density of a species and the spatial concentration of a chemoattractant in n-dimensional space. We prove the existence of solutions, which exist globally, and are L∞-bounded on finite time intervals. The hypotheses require nonlocal conditions on the species-induced production of the chemoattractant.
A classical result on the existence of global attractors for gradient systems is extended to the case of a semigroup S(t) lacking strong continuity, but satisfying the weaker property of being a closed map for every fixed t ≥ 0.