Page 1 Next

Displaying 1 – 20 of 25

Showing per page

New sufficient convergence conditions for the secant method

Ioannis K. Argyros (2005)

Czechoslovak Mathematical Journal

We provide new sufficient conditions for the convergence of the secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses “Lipschitz-type” and center-“Lipschitz-type” instead of just “Lipschitz-type” conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than the earlier ones and under our convergence hypotheses we can cover cases where the earlier conditions are violated.

New unifying convergence criteria for Newton-like methods

Ioannis K. Argyros (2002)

Applicationes Mathematicae

We present a local and a semilocal analysis for Newton-like methods in a Banach space. Our hypotheses on the operators involved are very general. It turns out that by choosing special cases for the "majorizing" functions we obtain all previous results in the literature, but not vice versa. Since our results give a deeper insight into the structure of the functions involved, we can obtain semilocal convergence under weaker conditions and in the case of local convergence a larger convergence radius....

Newton's methods for variational inclusions under conditioned Fréchet derivative

Ioannis K. Argyros, Saïd Hilout (2007)

Applicationes Mathematicae

Estimates of the radius of convergence of Newton's methods for variational inclusions in Banach spaces are investigated under a weak Lipschitz condition on the first Fréchet derivative. We establish the linear convergence of Newton's and of a variant of Newton methods using the concepts of pseudo-Lipschitz set-valued map and ω-conditioned Fréchet derivative or the center-Lipschitz condition introduced by the first author.

Nonlinear separable equations in linear spaces and commutative Leibniz algebras

D. Przeworska-Rolewicz (2010)

Annales Polonici Mathematici

We consider nonlinear equations in linear spaces and algebras which can be solved by a "separation of variables" obtained due to Algebraic Analysis. It is shown that the structures of linear spaces and commutative algebras (even if they are Leibniz algebras) are not rich enough for our purposes. Therefore, in order to generalize the method used for separable ordinary differential equations, we have to assume that in algebras under consideration there exist logarithmic mappings. Section 1 contains...

Non-monotoneous parallel iteration for solving convex feasibility problems

Gilbert Crombez (2003)

Kybernetika

The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in an Euclidean space, sometimes leads to slow convergence of the constructed sequence. Such slow convergence depends both on the choice of the starting point and on the monotoneous behaviour of the usual algorithms. As there is normally no indication of how to choose the starting point in order to avoid slow convergence, we present in this paper a non-monotoneous parallel algorithm...

Currently displaying 1 – 20 of 25

Page 1 Next