Eigenvalues and ranges for perturbations of nonlinear accretive and monotone operators in Banach spaces.
We define a spectrum for Lipschitz continuous nonlinear operators in Banach spaces by means of a certain kind of "pseudo-adjoint" and study some of its properties.
We use a two-point Newton-like method to approximate a locally unique solution of a nonlinear equation containing a non-differentiable term in a Banach space setting. Using more precise majorizing sequences than in earlier studies, we present a tighter semi-local and local convergence analysis and weaker convergence criteria. This way we expand the applicability of these methods. Numerical examples are provided where the old convergence criteria do not hold but the new convergence criteria are satisfied....
We extend the applicability of Newton's method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Pták. We obtain new sufficient convergence conditions for Newton's method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F. A. Potra, V. Pták, Sharp error bounds for Newton's process, Numer. Math., 34 (1980), 63–72, and F. A. Potra, V. Pták, Nondiscrete...