The Cauchy problem for the nonlinear Schrödinger Equation in H1.
In this study we are concerned with the problem of approximating a solution of a nonlinear equation in Banach space using Newton-like methods. Due to rounding errors the sequence of iterates generated on a computer differs from the sequence produced in theory. Using Lipschitz-type hypotheses on the mth Fréchet derivative (m ≥ 2 an integer) instead of the first one, we provide sufficient convergence conditions for the inexact Newton-like method that is actually generated on the computer. Moreover,...
The existence of solutions is studied for certain nonlinear differential equations with both linear and nonlinear conditions
We work on the research of a zero of a maximal monotone operator on a real Hilbert space. Following the recent progress made in the context of the proximal point algorithm devoted to this problem, we introduce simultaneously a variable metric and a kind of relaxation in the perturbed Tikhonov’s algorithm studied by P. Tossings. So, we are led to work in the context of the variational convergence theory.