Page 1

Displaying 1 – 5 of 5

Showing per page

A continuum of path-dependent equilibrium solutions induced by sticky expectations

Pavel Krejčí, Eyram Kwame, Harbir Lamba, Dmitrii Rachinskii, Andrei Zagvozdkin (2023)

Applications of Mathematics

We analyze a simple macroeconomic model where rational inflation expectations are replaced by a boundedly rational, and genuinely sticky, response to changes in the actual inflation rate. The stickiness is introduced in a novel way using a mathematical operator that is amenable to rigorous analysis. We prove that, when exogenous noise is absent from the system, the unique equilibrium of the rational expectations model is replaced by an entire line segment of possible equilibria with the one chosen...

A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí (2001)

Applications of Mathematics

It is known that the vector stop operator with a convex closed characteristic Z of class C 1 is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz continuous on the boundary Z of Z . We prove that in the regular case, this condition is also necessary.

Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity

Olaf Klein (2004)

Applications of Mathematics

The asymptotic behaviour for t of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress...

Currently displaying 1 – 5 of 5

Page 1