Comments on the rate of convergence between Mann and Ishikawa iterations applied to Zamfirescu operators.
In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function . The main idea of the proof relies on the compensated compactness theory.
In this paper, we introduce and study a new class of completely generalized nonlinear variational inclusions for fuzzy mappings and construct some new iterative algorithms. We prove the existence of solutions for this kind of completely generalized nonlinear variational inclusions and the convergence of iterative sequences generated by the algorithms.
Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of . Singularity classes containing bifurcation points with , are considered.