Nonlinear perturbations of linear operators having nullspace with strong unique continuation property (Preliminary communication)
We consider nonlinear equations in linear spaces and algebras which can be solved by a "separation of variables" obtained due to Algebraic Analysis. It is shown that the structures of linear spaces and commutative algebras (even if they are Leibniz algebras) are not rich enough for our purposes. Therefore, in order to generalize the method used for separable ordinary differential equations, we have to assume that in algebras under consideration there exist logarithmic mappings. Section 1 contains...
AMS Subj. Classification: 47J10, 47H30, 47H10We study some possibilities of nonlinear spectral theories for solving nonlinear operator equations. The main aim is to research a spectrum and establish some kind of nonlinear Fredholm alternative for Hammerstein operator KF.
This paper develops the results announced in the Note [14]. Using an eigenvalue problem governed by a variational inequality, we try to unify the theory concerning the post-critical equilibrium state of a thin elastic plate subjected to unilateral conditions.
The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in an Euclidean space, sometimes leads to slow convergence of the constructed sequence. Such slow convergence depends both on the choice of the starting point and on the monotoneous behaviour of the usual algorithms. As there is normally no indication of how to choose the starting point in order to avoid slow convergence, we present in this paper a non-monotoneous parallel algorithm...
We prove the existence of at least one non-trivial solution for Dirichlet quasilinear elliptic problems. The approach is based on variational methods.